LOYOLA COLLEGE (AUTONOMOUS) CHENNAI - 600 034

U.G.. DEGREE EXAMINATION – **ALLIED**

UCO 2302 - STATISTICS FOR DECISION MAKING

Date	e: 05-05-2025 Dept. No. Max. : 100 Ma											
`ime	e: 09:00 AM - 12:00 PM											
	SECTION A - K1 (CO1)											
	Answer ALL the Questions $(10 \times 1 = 10)$											
1.	Multiple Choice Questions:											
ı)	What is the formula for the arithmetic mean of a dataset?											
	a) Sum of values / Number of values b) (Sum of values) ² / Number of values											
	c) Sum of values X Number of values d) None of the above											
)	If the correlation coefficient is 0, what does it imply?											
	a) Perfect positive correlation b) No relationship between the variables											
	c) Perfect negative correlation d) Data is inconsistent											
;)	What is the objective of regression analysis?											
	a) Measure the strength of the relationship b) Classify variables into groups											
	c) Predict the value of one variable based on another d) Determine the dispersion of data											
1)	Which component of a time series captures long-term trends?											
	a) Cyclical variation b) Seasonal variation c) Trend d) Random variation											
e)	What is the main objective of a transportation problem?											
	a) Maximize total demand b) Minimize total transportation cost											
	c) Optimize supply chain structure d) Reduce workforce											
2.	Match the following											
<u>) </u>	Kurtosis - (i) Graphical representation of correlation											
<u>)</u>	Scatter Diagram - (ii) Measure of peakedness of a distribution											
)	Trend Analysis - (iii) Measures relative changes over time											
<u>)</u>	Index Number - (iv) Used to solve LPP with two variables											
e)	Linear Programming - (v) Measures relative changes over time											
	SECTION A - K2 (CO1)											
_	Answer ALL the Questions $(10 \times 1 = 10)$											
3.	State True or False											
<u>)</u>	The standard deviation is a measure of dispersion.											
<u>) </u>	The correlation coefficient ranges between -2 and +2.											
<u>;) </u>	Logistic regression is used for predicting categorical outcomes.											
<u>)</u>	The components of a time series include trend, seasonal, cyclic, and irregular variations.											
<u>(</u>	The Least Cost Method selects the cell with the highest cost first.											
<u>4.</u>	Fill in the blanks											
.)	The standard deviation is the square root of the											
<u>)</u>	Spearman's rank correlation is used when data is measured on an scale.											
<u>)</u>	The equation of a regression line is used to predict the value of a variable.											
<u>) </u>	The ratio-to-moving average method is used to measure variations.											
:)	The Least Cost Method selects the cell with the cost first.											
	SECTION B - K3 (CO2)											
	wer any TWO of the following $(2 \times 10 = 20)$											
5.	The marks obtained by 10 students in a test are as follows:											
	Marks: 25, 30, 35, 40, 45, 50, 50, 55, 60, and 65.											
_	a) Find the Mean of the marks b) Find the Median of the marks c) Find the Mode of the marks											
5.	The following are the heights (in cm) of 8 students:											
	Heights (in cm): 150, 155, 160, 162, 165, 168, 170, 175.											
7.	Find the Quartile Deviation (Q.D.).											
	Distinguish between Correlation and Regression.											

8.	Calculate Sp	culate Spearman's Rank Correlation Coeffici							ficient from the following data:							
					Rank B's Ra											
		Maths			1	1	2									
		Science		2		3										
		English		3		1	4		\dashv							
						1										
		History		5		5		-								
		Geography	ý						(000)							
					SEC	TIO	N C – 1	K4 (<u>CO3)</u>							
	Answer any TWO of the following $(2 \times 10 = 20)$															
9.	Given the following data for two variables X and Y:															
	X	1				2		3		4		5		;		
	Y	2				4		5			4			5		
	Find the reg	ression equa	ation c	of Y or	ı X.		· · · · · ·									
10.	The following data represents the production of a product over ten years: Calculate 3 yearly moving aver													average.		
	Year	2015	201		2017	20		2019		2020		21	202		023	2024
	Productio		85		90	9		95		97		00	102		105	108
1.1									1 . 4		11	<i>J</i> 0	102		103	100
11.	Fit a trend line by the method of semi-averages for the given data.									06 1	007	7				
				1990 1991			992	1993			1994 1995				997	4
		Sales	1:		11		20	1(-	15		25	3:		30	
12.	Find the initial basic feasible solution for the following transportation problem by Vogel's Approxima												oximation			
	Method (VA	.M).		_												
						Ι	Distribu	ıtion	Cent	ers						
					D1		1		D3				Availability			
				0.1				-		-	+					
				O1	2		3		11		7		6			
		Origin		O2 1			0		6	1			1			
					5		8		15	15 9		\neg	1	0	1	
		Requi				_	5		3	-+	2		1		_	
	1	Requii	CHICH	ι		TIC		TZ = 1								
	ONE	C.1 C.11	•		SEC	110	N D – 1	K) (<u>(UU4)</u>)			71	20 2	0)	
	wer any ONE												(1 x	20 = 2	0)	
13.	Compute Mo			Mode 1								1				
			<u>) – 10 </u>	+)	30 – 40			40 – 50		50	- 60	
	Frequen				8 14				18			12			7	
14.	Calculate the	e seasonal i	ndex f	for the	quarte	rly p	roduct	ion (of a pi	rodu	ct using	g the	metho	d of sin	nple a	averages.
				I Quarter		II Quarter		Î	III Quarter			IV Quarter			-	
		2020		72		68			62			76				
		2021		78		74			78			72				
		2022		74		70			72		+	76				
		2023		76			74			74		_	72			
					74			_						\dashv		
	2024 72 72 76 68 SECTION E – K6 (CO5)															
		0.1 0.11			SEC	110	NE-	K6 (<u>(CO5)</u>	1				20 -		
	wer any ONE												(1 x	20 = 2	20)	
15.	Calculate Ka			ficient		relat				owin	g data:	1				
		X 12 9		9	8			10		11		13 7				
	[Y	14		8		6		9		11		12	3		
16.	Find an initi	al basic feas	sible s	olutio	n of the	foll	owing	prob	olem 1	ısino	North	Wes	t Corne	er rule.		
			2													
	Distribution Centers D1 D2 D3 D4 Supply															
			-				D2		D3		D4					
			01	5		3		6	5	2		1	9			
		Origin		O2	4		7		(9	1		3	7		
				O3	!											
					3		4			7	5		3	4		
			Demand				10		,	21 25						
		De	emand	Į.	16		18		31		25					

#############